Mid-Semestral Exam B.Math Algebra-IV 2015-2016

Time: 3 hrs Max score: 100

Answer question (1) and any **four** from the rest.

(1) Prove or disprove.

(a) Let $F(\alpha)$ be an extension of a field F such that $[F(\alpha) : F]$ is odd. Then $F(\alpha) = F(\alpha^2)$.

- (b) Every algebraic extension is a finite extension.
- (c) If α is a real root of the polynomial $x^3 + 3x + 1$, then α cannot
- be constructed by ruler and compass.
- (d) There exist finite fields which are not perfect.
- (e) Every finite extension of a perfect field is separable. (4×5)
- (2) Let α ∈ C be a root of f(x) = x³ x² 4x 1.
 (a) Show that f(x) is irreducible over Q, clearly stating any result that you use.
 - (b) Prove that $-(1+\alpha)^{-1}$ is also a root of f.
 - (c) Prove or disprove that $\mathbb{Q}(\alpha)/\mathbb{Q}$ is Galois.
 - (d) If $\zeta = e^{2\pi i/3}$, prove that f is irreducible over $\mathbb{Q}(\zeta)$. (5+4+6+5)
- (3) (a) Let $f(x) \in F[x]$ be a monic polynomial of degree n > 0. Show that if K is the splitting field of f(x) over F, then [K : F] divides n!.
 - (b) Find the splitting field of $x^4 + 2$ over (i) \mathbb{Q} and (ii) \mathbb{F}_3 . (8+6+6)
- (4) (a) Let p be a prime. Prove that for each positive integer r, there is a unique finite field F, up to an isomorphism, such that |F| = p^r..
 (b) If F_{p^r} denotes the unique finite field of order p^r, then show that F_{p^r}|F_p is a Galois extension.
 (c) Also show that the Galois group Gal(F_{p^r}|F_p) is the cyclic group

of order r. (8+4+8)

(5) (a) Let K be a finite extension of \mathbb{Q} . Prove that there are only a finite number of roots of unity in K.

(b) Determine the automorphism group $\operatorname{Aut}(\mathbb{R}|\mathbb{Q})$. (8+12)

Please turn over

(6) Let $f(x) = x^3 - 5$ over \mathbb{Q} .

(a) Determine the splitting field of f(x) over \mathbb{Q} , say L, and the degree of L over \mathbb{Q} .

(b) Show that the Galois group $Gal(L|\mathbb{Q})$ is isomorphic to the symmetric group S_3 .

(c) Determine all non-trivial subgroups of the Galois group, and the corresponding fixed fields, over \mathbb{Q} . (6+6+8)

 $\mathbf{2}$